
How to Implement a Stand-alone Verifier
for the Verificatum Mix-Net

when Used Only for Shuffling

Douglas Wikström
dog@csc.kth.se

August 27, 2013

Abstract

The Verificatum Mix-Net is an implementation of an El Gamal-based mix-net which
uses the Fiat-Shamir heuristic to produce a universally verifiable proof of correctness
during the execution of the protocol. This document gives a detailed description of
this proof targeting implementors of stand-alone verifiers. For more information, see
http://www.verificatum.org.

This is an abridged version of a longer document. Only parts needed to verify
the correctness of a proof of a shuffle are included.

Copyright 2008 2009 2010 2011 2012 2013 Douglas Wikström

Contents

1 Introduction 1

2 Background 1
2.1 The El Gamal Cryptosystem . 1
2.2 A Mix-Net Based on the El Gamal Cryptosystem 2
2.3 Outline of the Verification Algorithm . 3

3 How to Write a Verifier 3
3.1 List of Manageable Sub-tasks . 3
3.2 How to Divide the Work . 4

4 Byte Trees 4
4.1 Definition . 4
4.2 Representation as an Array of Bytes . 4

5 Cryptographic Primitives 5
5.1 Hash Functions . 5
5.2 Pseudo-random Generators . 5
5.3 Random Oracles . 6

6 Representations of Arithmetic Objects 6
6.1 Basic Objects . 6
6.2 Prime Order Fields and Product Rings . 7
6.3 Multiplicative Groups Modulo Primes . 8
6.4 Arrays of Group Elements and Product Groups 8
6.5 Marshalling Groups . 9
6.6 Deriving Group Elements from Random Strings 9

7 Protocol Info Files 10
7.1 XML Grammar . 10
7.2 Extracted Values . 11

8 Verifying Fiat-Shamir Proofs 11
8.1 Random Oracles . 11
8.2 Independent Generators . 12
8.3 Proof of a Shuffle . 12

9 Verification 13
9.1 Components of the Non-Interactive Zero-Knowledge Proof 14

9.1.1 Files in the Main Directory . 14
9.1.2 Files in the Proofs Directory . 15
9.1.3 Relation Between Files and Abstract Notation 15

9.2 Subroutines of the Verification Algorithm . 15
9.3 Verification Algorithm . 16

10 Standard Command Line Interface of Verifier 18

11 Additional Verifications Needed in Applications 19

12 Acknowledgments 19

A Test Vectors for Cryptographic Primitives 20

B Schema for Protocol Info Files 21

C Example Protocol Info File 24

D Zero-Knowledge Protocols 28

1 Introduction

The zero knowledge proofs in Verificatum mix-net (VMN) can be made non-interactive using
the Fiat-Shamir heuristic [2] and this is also the default behaviour. These proofs end up in a
special proof directory along with all intermediate results published on the bulletin board during
the execution. The proofs and the intermediate results allows anybody to verify the correctness
of the execution as a whole, i.e., that the joint public key, the input ciphertexts, and the output
ciphertexts are related as defined by the protocol and the public parameters of the execution. The
goal of this document is to give a detailed description of how to implement an algorithm for
verifying the complete contents of the proof directory.

2 Background

Before we delve into the details of how to implement a verifier, we recall the El Gamal cryp-
tosystem and briefly describe the mix-net implemented in Verificatum (in the case where the Fiat-
Shamir heuristic is applied).

2.1 The El Gamal Cryptosystem

The El Gamal cryptosystem [1] is defined over a group Gq of prime order q. The set M of
plaintexts is defined to be the group Gq and the set of ciphertexts C is the product space Gq �Gq.
The randomness used to encrypt is sampled fromR � Zq.

A secret key x P Zq is sampled randomly, and a corresponding public key pk � pg, yq is
defined by y � gx, where g is (typically) the standard generator in Gq. To encrypt a plaintext m P
M, a random exponent s P R is chosen and the ciphertext in C is computed as Encpk pm, sq �
pgs, ysmq. A plaintext can then be recovered from a ciphertext pu, vq as Decxpu, vq � u�xv � m.

To encrypt an arbitrary string of bounded length t we also need an injection t0, 1ut Ñ Gq,
which can be efficiently computed and inverted.

Homomorphic. The cryptosystem is homomorphic, i.e., if

pu1, v1q � Encpk pm1, s1q and pu2, v2q � Encpk pm2, s2q

are two ciphertexts, then their element-wise product

pu1u2, v1v2q � Encpk pm1m2, s1 � s2q

is an encryption of m1m2. If we set m2 � 1, then this feature can be used to re-encrypt pu1, v1q
without knowledge of the randomness. To see this, note that for every fixed s1 and random s2, the
sum s1 � s2 is randomly distributed in Zq.

Encrypting longer messages with multiple keys. The El Gamal cryptosystem can be gener-
alized in several ways to encrypt longer messages. One way is to simply use multiple public
keys. More precisely, suppose that pk � ppk1, . . . , pkκq is a list of public keys with correspond-
ing secret keys sk � psk1, . . . , skκq, where pk i P Gq � Gq and sk i P Zq. Then a message
m � pm1, . . . ,mκq P G

κ
q can be encrypted as

Encpk pm, sq �
�
Encpk1

pm1, s1q, . . . ,Encpkκpmκ, sκq
�
,

where s � ps1, . . . , sκq P Zκq . We view this as the natural generalization of El Gamal to product
groups. All we need to do is change the order of the group elements. We say that κ is the key

1

width and define the message space to beMκ � Gκq , the randomness space to be Rκ � Zκq , and
the ciphertext space to be Cκ �Mκ �Mκ. Then we define

pg1, . . . , gκq
ps1,...,sκq � pgs11 , . . . , g

sκ
κ q ,

i.e., exponentiation is interpreted component wise. Let gi P Gq be a generator for i � 1, . . . , κ.
Then the element g � pg1, g2, . . . , gκq generatesMκ in the sense that for each element u PMκ

there is a unique vector s P Rκ such that u � gs.
A secret key for El Gamal with key width κ is a randomly chosen element sk P Rκ and

the corresponding public key pk is defined as pg, yq, where y � gsk . To encrypt a message
m P Mκ an element s P Rκ is sampled randomly and then the ciphertext is computed as
Encpk pm, sq � pgs, ysmq, where ysm is interpreted as componentwise multiplication. Decryp-
tion and computation of decryption factors can be defined similarly.

Encrypting longer messages with multiple ciphertexts. Using a simple hybrid argument it is
easy to see that a longer plaintext m � pm1, . . . ,mωq PMω

κ can be encrypted using a public key
pk P Cκ by encrypting each component independently, as

�
Encpk pm1, s1q, . . . ,Encpk pmω, sωq

�
,

where s � ps1, . . . , sωq P Rωκ is chosen randomly.
It is convenient to generalize our notation similarly to the generalization used for multiple keys

above. Thus, we letMκ,ω �Mω
κ be the plaintext space, we let Rκ,ω � Rωκ be the randomness

space, and let Cκ,ω �Mκ,ω �Mκ,ω be the ciphertext space. With this notation encryption of a
message m P Mκ,ω using randomness s P Rκ,ω is simply denoted Encpk pm, sq � pgs, ysmq,
where g is understood to be a generator ofMκ, sk P Rκ, and y � gsk . Please note that with this
generalization pk P Cκ and not in Cκ,ω which might have been expected by the reader. Decryption
and computation of decryption factors can be defined in the natural way.

2.2 A Mix-Net Based on the El Gamal Cryptosystem

We use the re-encryption approach of Sako and Kilian [4] and the proof of a shuffle of Terelius
and Wikström [5]. The choice of proof of a shuffle is mainly motivated by the fact that many other
efficient proofs of shuffles are patented.

The mix-net is executed by k mix-servers with key width κ and width of ciphertexts ω.

Distributed key generation. A joint public key pk � pg, yq P Cκ is provided by an external key
generation algorithm. How this is done is not relevant for this document.

Shuffling. We denote the number of ciphertexts by N . The ith ciphertext w0,i � Encpk pmi, siq
from the set Cκ,ω encrypts some message mi PMκ,ω using randomness si P Rκ,ω.

Recall that a non-interactive proof allows a prover to convince a verifier that a given statement
is true by sending a single message. The verifier then either accepts the proof as valid or rejects
it as invalid. In this context a proof is said to be zero-knowledge if, loosely, it does not reveal
anything about the witness of the statement known by the prover.

The mix-servers form a list L0 � pw0,0, . . . , w0,N�1q of all the input ciphertexts. Then the jth
mix-server proceeds as follows for l � 1, . . . , λ:

• If l � j, then it re-encrypts each ciphertext in Ll�1, permutes the resulting ciphertexts and
publishes them as a list Ll. More precisely, it chooses rl,i P Rκ,ω and a permutation πl
randomly and outputs Ll � pwl,0, . . . , wl,N�1q, where

wl,i � wl�1,πlpiqEncpk p1, rl,πlpiqq . (1)

2

Then it publishes a non-interactive zero-knowledge proof of knowledge ξl of all the rl,i P Zq
and πl and that they satisfy (1).

• If l � j, then it waits until the lth mix-server publishes Ll and a non-interactive zero-
knowledge proof of knowledge ξl. The proof is verified and if it is rejected, then Ll is set
equal to Ll�1.

2.3 Outline of the Verification Algorithm

We give a brief outline of the verification algorithm that checks that the intermediate results of an
execution and all the zero-knowledge proofs are consistent.

Check that each mix-server re-encrypted and permuted the ciphertexts in its input or was
ignored in the processing, i.e., for l � 1, . . . , λ:

• If ξl is not a valid proof of knowledge of exponents rl,i and a permutation πl such that
wl,i � wl�1,πlpiqEncpk p1, rl,πlpiqq, then set Ll � Ll�1.

3 How to Write a Verifier

To turn the outline of the verification algorithm in Section 2.3 into an actual verification algorithm,
we must specify: all the parameters of the execution, the representations of all arithmetic objects,
the zero-knowledge proofs, and how the Fiat-Shamir heuristic is applied.

3.1 List of Manageable Sub-tasks

We divide the problem into a number of more manageable sub-tasks and indicate which steps
depend on previous steps.

1. Byte Trees. All of the mathematical and cryptographic objects are represented as so called
byte trees. Section 4 describes this simple and language-independent byte-oriented format.

2. Cryptographic Primitives. We need concrete implementations of hash functions, pseudo-
random generators, and random oracles, and we must define how these objects are repre-
sented. This is described in Section 5.

3. Arithmetic Library. An arithmetic library is needed to compute with algebraic objects,
e.g., group elements and field elements. These objects also need to be converted to and
from their representations as byte trees. Section 6 describes how this is done.

4. Protocol Info Files. Some of the protocol parameters, e.g., auxiliary security parameters,
must be extracted from an XML encoded protocol info file before any verification can take
place. Section 7 describes the format of this file and which parameters are extracted.

5. Verifying Fiat-Shamir Proofs. The tests performed during verification are quite complex.
Section 8 explains how to implement these tests.

6. Verification of a Complete Execution. Section 9 combines all of the above steps into a
single verification algorithm.

3

3.2 How to Divide the Work

Step 1 does not depend on any other step. Step 2 and Step 3 are independent of the other steps
except for how objects are encoded to and from their representation as byte trees. Step 4 can be
divided into the problem of parsing an XML file and then interpreting the data stored in each XML
block. The first part is independent of all other steps, and the second part depends on Step 1, Step 2
and Step 3. Step 5 depends on Step 1, Step 2, and Step 3, but not on Step 4, and it may internally
be divided into separate tasks. Step 6 depends on all previous steps.

4 Byte Trees

We use a byte-oriented format to represent objects on file and to turn them into arrays of bytes.
The goal of this format is to be as simple as possible.

4.1 Definition

A byte tree is either a leaf containing an array of bytes, or a node containing other byte trees. We
write leaf(d) for a leaf with a byte array d and we write node(b1, . . . , bl) for a node with children
b1, . . . , bl. Complex byte trees are then easy to describe.

Example 1. The byte tree containing the data AF, 03E1, and 2D52 (written in hexadecimal) in
three leaves, where the first two leaves are siblings, but the third is not, is

nodepnodepleafpAFq, leafp03E1qq, leafp2D52qq .

4.2 Representation as an Array of Bytes

We use byteskpnq as a short-hand to denote the 8k-bit two’s-complement representation of n in
big endian byte order. We also use hexadecimal notation for constants, e.g., 0Ameans bytes1p10q.
A byte tree is represented by an array of bytes as follows.

• A leaf leafpdq is represented by the concatenation of: a single byte 01 to indicate that it is
a leaf, four bytes bytes4plq, where l is the number of bytes in d, and the data bytes d.

• A node nodepb1, . . . , blq is represented by the concatenation of: a single byte 00 to in-
dicate that it is a node, four bytes bytes4plq representing the number of children l, and
bytespb1q | bytespb2q | � � � | bytespblq, where | denotes concatenation and bytespbiq de-
notes the representation of the byte tree bi as an array of bytes.

Example 2 (Example 1 contd.). The byte tree is represented as the following array of bytes.

00 00000002

00 00000002

01 00000001 AF

01 00000002 03E1

01 00000002 2D52

ASCII strings. ASCII strings are identified with the corresponding byte arrays. Thus, a string s
can be represented as a byte tree leafpsq. No ending symbol is used to indicate the length of the
string, since the length of the string is stored in the leaf.

Example 3. The string "ABCD" is represented by leafp65666768q.

4

Hexadecimal encodings. Sometimes we store byte trees as the hexadecimal encoding of their
representation as an array of bytes. We denote by hexpaq the hexadecimal encoding of an array
of bytes. We denote by unhexpsq the reverse operation that converts an ASCII string s of an even
number of digits 0-9 and A-F into the corresponding array of bytes.

5 Cryptographic Primitives

For our cryptographic library we need hash functions, pseudo-random generators, and random
oracles derived from these.

5.1 Hash Functions

Verificatum allows an arbitrary hash function to be used, but in this document we restrict our
attention to the SHA-2 family [3], i.e., SHA-256, SHA-384, and SHA-512. In future versions
of Verificatum it will be possible to use SHA-3 (Keccak) as well, but the standard parameters of
Keccak has not yet been announced. We use the following notation.

• Hashfunctionpsq – Creates a hashfunction from one of the strings "SHA-256", "SHA-384",
or "SHA-512".

• Hpdq – Denotes the hash digest of the byte array d using the hash function H .

• outlenpHq – Denotes the number of bits in the output of the hash function H .

Example 4. If H � Hashfunctionp"SHA-256"q and d is a byte tree then Hpdq denotes the hash
digest of the array of bytes representing the byte tree as computed by SHA-256, and outlenpHq
equals 256.

5.2 Pseudo-random Generators

We need a pseudo-random generator (PRG) to expand a short challenge string into a long “ran-
dom” vector to use batching techniques in the zero-knowledge proofs of Section 8. Verificatum
allows any pseudo-random generator to be used, but in the random oracle model there is no need to
use a provably secure PRG based on complexity assumptions. We consider a simple construction
based on a hash function H .

The PRG takes a seed s of nH � outlenpHq bits as input. Then it generates a sequence of
bytes r0 | r1 | r2 | � � � , where | denotes concatenation and ri is an array of nH{8 bytes defined by

ri � Hps | bytes4piqq

for i � 0, 1, . . . , 231�1, i.e., in each iteration we hash the concatenation of the seed and an integer
counter (four bytes). It is not hard to see that if Hps | �q is a pseudo-random function for a random
choice of the seed s, then this is a provably secure construction of a pseudo-random generator. We
use the following notation.

• PRGpHq – Creates an unseeded instance PRG from a hash function H .

• seedlenpPRGq – Denotes the number of seed bits needed as input by PRG .

• PRGpsq – Denotes an array of pseudo-random bytes derived from the seed s. Strictly
speaking this array is 231nH bits long, but we simply write pt0, . . . , tlq � PRGpsq, where
each ti is of a given bit length, instead of explicitly saying that we iterate the construction a
suitable number of times and then truncate to the exact output length we want.

Appendix A contains test vectors for this pseudo-random generator.

5

5.3 Random Oracles

We need a flexible random oracle that allows us to derive any number of bits. We use a construction
based on a hash function H . To differentiate the random oracles with different output lengths, the
output length is used as a prefix in the input to the hash function. The random oracle first constructs
a pseudo-random generator PRG � PRGpHq which is used to expand the input to the requested
number of bits. To evaluate the random oracle on input d the random oracle then proceeds as
follows, where nout is the output length in bits.

1. Compute s � Hpbytes4pnoutq | dq, i.e., compress the concatenation of the output length
and the actual data to produce a seed s.

2. Let a be the rnout{8s first bytes in the output of PRGpsq.

3. If nout mod 8 � 0, then set the 8 � pnout mod 8q first bits of a to zero, and output the
result.

We remark that setting some of the first bits of the output to zero to emulate an output of arbitrary
bit length is convenient in our setting, since it allows the outputs to be directly interpreted as
random positive integers of a given (nominal) bit length.

This construction is a secure implementation of a random oracle with output length nout for
any nout ¤ 231outlenpHq when H is modeled as a random oracle and the PRG of Section 5.2 is
used. Note that it is unlikely to be a secure implementation if a different PRG is used. We use the
following notation:

• RandomOraclepH,noutq – Creates a random oracle RO with output length nout from the
hash function H .

• ROpdq – Denotes the output of the random oracle RO on an input byte array d.

6 Representations of Arithmetic Objects

Every arithmetic object in Verificatum is represented as a byte tree. In this section we pin down
the details of these representations. We also describe how to derive group elements from an array
of random bytes.

6.1 Basic Objects

Integers. A multi-precision integer n is represented by leafpbyteskpnqq for the smallest possible
integer k.

Example 5. 263 is represented by 01 00000002 0107.

Example 6. �263 is represented by 01 00000002 FEF9.

Arrays of booleans. An array pa1, . . . , alq of booleans is represented as leafpbq, where b is an
array pb1, . . . , blq of bytes where bi equals 01 if ai is true and 00 otherwise.

Example 7. The array ptrue, false, trueq is represented by leafp010001q.

Example 8. The array ptrue, true, falseq is represented by leafp010100q.

6

6.2 Prime Order Fields and Product Rings

Field element. An element a in a prime order field Zq is represented by leafpbyteskpaqq, where
a is identified with its integer representative in r0, q� 1s and k is the smallest possible k such that
q can be represented as byteskpqq. In other words, field elements are represented using fixed size
byte trees, where the fixed size depends on the order of the field.

Example 9. 258 P Z263 is represented by 01 00000002 0102.

Example 10. 5 P Z263 is represented by 01 00000002 0005.

Array of field elements. An array pa1, . . . , alq of field elements is represented by a byte tree
nodepa1, . . . , alq, where ai is the byte tree representation of ai.

Example 11. The array p1, 2, 3q of elements in Z263 is represented by:

00 00000003

01 00000002 0001

01 00000002 0002

01 00000002 0003

Product ring element. An element a � pa1, . . . , alq in a product ring is represented by a byte
tree nodepa1, . . . , alq, where ai is the byte tree representation of the component ai. Note that this
representation keeps information about the order in which a product group is formed intact (see
the second example below).

Example 12. The element p258, 5q P Z263 � Z263 is represented by:

00 00000002

01 00000002 0102

01 00000002 0005

Example 13. The element pp258, 6q, 5q P pZ263 � Z263q � Z263 is represented by:

00 00000002

00 00000002

01 00000002 0102

01 00000002 0006

01 00000002 0005

Array of product ring elements. An array pa1, . . . , alq of elements in a product ring where
ai � pai,1, . . . , ai,kq, is represented by nodepb1, . . . , bkq, where bi is the array pa1,i, . . . , al,iq and
bi is its representation as a byte tree.

Thus, the structure of the representation of an array of ring elements mirrors the representation
of a single ring element. This seemingly contrived representation turns out to be convenient in
implementations.

7

Example 14. The array
�
p1, 4q, p2, 5q, p3, 6q

�
of elements in Z263 � Z263 is represented as

00 00000002

00 00000003

01 00000002 0001

01 00000002 0002

01 00000002 0003

00 00000003

01 00000002 0004

01 00000002 0005

01 00000002 0006

6.3 Multiplicative Groups Modulo Primes

Group. A subgroup Gq of prime order q of the multiplicative group Z�
p , where p ¡ 3 is prime,

with standard generator g is represented by the byte tree

nodepp, q, g,bytes4peqq ,

where the integer e determines how a string is encoded into a group element and can be ignored
for the purpose of this document.

Group element. An element a P Gq, where Gq is a subgroup of prime order q of Z�
p for a

prime p is represented by leafpbyteskpaqq, where a is identified with its integer representative in
r0, p� 1s and k is the smallest integer such that p can be represented as byteskppq.

Example 15. Let Gq be the subgroup of order q � 131 in Z�
263. Then 258 P Gq is represented by

01 00000002 0102.

Example 16. Let Gq be the subgroup of order q � 131 in Z�
263. Then 3 P Gq is represented by 01

00000002 0003.

6.4 Arrays of Group Elements and Product Groups

Array of group elements. An array pa1, . . . , alq of group elements is represented by a byte tree
nodepa1, . . . , alq, where ai is the byte tree representation of ai.

Product group element. An element a � pa1, . . . , alq in a product group is represented by
nodepa1, . . . , alq, where ai is the byte tree representation of ai. This is similar to the representa-
tion of product rings.

Array of product group elements. An array pa1, . . . , alq of elements in a product group, where
ai � pai,1, . . . , ai,kq, is represented by nodepb1, . . . , bkq, where bi is pa1,i, . . . , al,iq and bi is its
representation as a byte tree. This is similar to the representation of arrays of elements in a product
ring.

8

6.5 Marshalling Groups

When objects convert themselves to byte trees in Verificatum, they do not store the name of the
Java class of which they are instances. Thus, to recover an object from such a representation,
information about the class must be otherwise available. Java serialization would not be portable
and potentially unstable with different versions of Java. Thus, we use a simplified scheme where a
group Gq represented by an instance of a Java class PGroupClass in Verificatum is marshalled
into a byte tree

nodepleafp"PGroupClass"q, Gqq .

This byte tree in turn is converted into a byte array which is coded into hexadecimal and prepended
with an ASCII comment. The comment and the hexadecimal coding of the byte array is separated
by double colons. The resulting ASCII string is denoted by s � marshalpGqq and the group Gq
recovered from s by removing the comment and colons, converting the hexadecimal string to a
byte array, converting the byte array into a byte tree, and converting the byte tree into a group Gq,
is denoted by Gq � unmarshalpsq.

Multiplicative groups are implemented by the class verificatum.arithm.ModPGroup
in Verificatum.

6.6 Deriving Group Elements from Random Strings

In Section 8.2 we need to derive group elements from the output of a pseudo-random generator
PRG . (Strictly speaking we use PRG as a random oracle here, but this is secure due to how it is
defined.) Exactly how this is done depends on the group and an auxiliary security parameter nr.
We denote this by

h � ph0, . . . , hN 1�1q � Gq.randomArraypN 1,PRGpsq, nrq

and describe how this is defined for each type of group below. The auxiliary security parameter nr
determines the statistical distance in distribution between a randomly chosen group element and
the element derived as explained below if we assume that the output of the PRG is truly random.

We stress that it must be infeasible to find a non-trivial representation of the unit of the group in
terms of these generators, i.e., it should be infeasible to find e, e0, . . . , eN 1�1 not all zero modulo q
such that ge

±N 1�1
i�0 heii � 1. In particular, it is not acceptable to derive exponents x0, . . . , xN 1�1 P

Zq and then define hi � gxi .

Modular group. Let Gq be the subgroup of order q of the multiplicative group Zp, where p ¡ 3
is prime. Then an array ph0, . . . , hN 1�1q in Gq is derived as follows from a seed s.

1. Let np be the bit length of p.

2. Let pt0, . . . , tN 1�1q � PRGpsq, where ti P t0, 1u8rpnp�nrq{8s is interpreted as a non-
negative integer.

3. Set t1i � ti mod 2np�nr and let hi � pt1iq
pp�1q{q mod p.

In other words, for each group element hi we first extract the minimum number of complete bytes
rpnp�nrq{8s. Then we reduce the number of bits to exactly np�nr. Finally, we map the resulting
integer into Gq using the canonical homomorphism.

This construction makes sense if one considers an implementation. It is natural to implement
a routine that derives an array of non-negative integers t1i of a given bit length np�nr as explained
above. An array of group elements is then derived from the array of non-negative integers in the
natural way by mapping the integers into Gq.

9

7 Protocol Info Files

The protocol info file contains all the public parameters agreed on by the operators before the key
generation phase of the mix-net is executed, and some of these parameters must be extracted to
verify the correctness of an execution.

7.1 XML Grammar

A protocol info file uses a simple XML format and contains a single <protocol></protocol>

block. The preamble of this block contains a number of global parameters, e.g., the number k of
parties in the protocol is given by a <nopart>k</nopart> block, and the group over which the
protocol is executed is defined by a <pgroup>123ABC</pgroup> block, where 123ABC is either
a hexadecimal encoding of a byte tree representing the group, or the ASCII name of the group in
the case of a named group.

After the global parameters follows a <party></party> block for each party that takes part in
the protocol, and each such block contains all the public information about that party, i.e., the name
of a party is given by a <name></name> block. The contents of the <party></party> blocks are
important during the execution of the protocol, but they are not used to verify the correctness of
an execution and can safely be ignored when implementing a verifier.

A parser of protocol info files must be implemented. If protocolInfo.xml is a protocol
info file, then we denote by p � ProtocolInfopprotocolInfo.xmlq an object such that prbs is
the data d stored in a block d in the preamble of the protocol info file, i.e., preceding any
<party></party> block. We stress that the data is stored as ASCII encoded strings.

Listing 1 gives a skeleton example of a protocol info file, where "123ABC" is used as a
placeholder for some hexadecimal rendition of an arithmetic or cryptographic object. Listing C in
Appendix C contains a complete example of a protocol info file.

<protocol>

<name>Swedish Election</name>
<nopart>3</nopart>
<pgroup>123ABC</pgroup>
...

<party>
<name>Party1</name>
<pubkey>123ABC</pubkey>
...

</party>
...

</protocol>

Listing 1: Skeleton of a protocol info file. All values relevant to a verifier appear in the preamble.
There are no nested blocks within a <party></party> block.

Listing B in Appendix B contains the formal XML schema for protocol info files, but this
schema depends on the type of bulletin board, since different bulletin boards accept different
parameters. Thus, it is wise to ignore this schema and instead use a general XML parser of
well-formed documents and extract only the needed values. This works, since we do not use any
attributes of XML tags, i.e., all values are stored as data between an opening tag and a closing tag.

10

7.2 Extracted Values

To interpret an ASCII string s as an integer we simply write intpsq, e.g., intp"123"q � 123. We let
p � ProtocolInfo(protocolInfo.xml) and define the values we later use in Section 8
and Section 9.

• versionprot � prversions is the version of Verificatum used during the execution that
produced the proof.

• sid � prsids is the globally unique session identifier tied to the generation of a particular
joint public key.

• k � intpprnopartsq specifies the number of parties.

• λ � intpprthressq specifies the number of mix-servers that take part in the shuffling, i.e.,
this is the threshold number of mix-servers that must be corrupted to break the privacy of
the ciphertexts.

• ne � intpprvbitlenrosq specifies the number of bits in each component of random vec-
tors used for batching in proofs of shuffles and proofs of correct decryption.

• nr � intpprstatdistsq specifies the acceptable statistical error when sampling random
values. The precise meaning of this parameter is hard to describe. Loosely, randomly chosen
elements in the protocol are chosen with a distribution at distance at most roughly 2�nr from
uniform.

• nv � intpprcbitlenrosq specifies the number of bits used in the challenge of the verifier
in zero-knowledge proofs.

• sH � prrohashs specifies the hash function H used to implement the random oracles.

• sPRG � prprgs specifies the hash function used to implement the pseudo-random generator
used to expand challenges into arrays.

• sGq � prpgroups specifies the underlying group Gq.

• κ � intpprkeywidthsq specifies the key width.

• ωdefault � intpprwidthsq specifies the default width of ciphertexts and plaintexts.

8 Verifying Fiat-Shamir Proofs

From now on we simply write a for the byte tree representation of an object a.

8.1 Random Oracles

Throughout this section we use the following two random oracles constructed from the hash func-
tion H , the minimum number ns � seedlenpPRGq of seed bits required by the pseudo-random
generator PRG , and the auxiliary security parameter nv.

• RO seed � RandomOraclepH,nsq is the random oracle used to generate seeds to PRG .

• ROchallenge � RandomOraclepH,nvq is the random oracle used to generate challenges.

11

8.2 Independent Generators

The protocol in Section 8.3 also require “independent” generators inGq and these generators must
be derived using the random oracles. To do that a seed

s � RO seedpρ | leafp"generators"qq

is computed by hashing a prefix ρ derived from the protocol info file and the auxiliary session
identifier and a string specifying the intended use of the “independent” generators. Then the
generators are defined by

h � ph0, . . . , hN 1�1q � Gq.randomArraypN 1,PRGpsq, nrq ,

which is defined in Section 6.6. The prefix ρ is computed in Step 4 of the main verification routine
in Section 9.3 and given as input to Algorithm 17 below. The length N 1 is at least N and larger if
needed for pre-computation.

8.3 Proof of a Shuffle

A proof of a shuffle is used by a mix-server to prove that it re-encrypted and permuted its input
ciphertexts. Below we only describe the computations performed by the verifier for a specific
application of the Fiat-Shamir heuristic. For a detailed description of the complete protocol in-
cluding the computations performed by the prover we refer the reader to Appendix D and Terelius
and Wikström [5].

12

Protocol 17 (Proof of a Shuffle).
Input Description
ρ Prefix to random oracles.
N Size of the arrays.
ne Number of bits in each component of random vectors used for batching.
nr Acceptable “statistical error” when deriving independent generators.
nv Number of bits in challenges.

PRG Pseudo-random generator used to derive random vectors for batching.
Gq Group of prime order with standard generator g.
Rκ,ω Randomizer group.
Cκ,ω Ciphertext group.
pk El Gamal public key.
w Array w � pw0, . . . , wN�1q of input ciphertexts in Cκ,ω.
w1 Array w1 � pw1

0, . . . , w
1
N�1q of output ciphertexts in Cκ,ω.

µ Permutation commitment.
τpos Commitment of the Fiat-Shamir proof.
σpos Reply of the Fiat-Shamir proof.

Program
1. (a) Interpret µ as an array u � pu0, . . . , uN�1q of Pedersen commitments in Gq.

(b) Interpret τpos as nodepB,A1, B1, C 1, D1, F 1q, where A1, C 1, D1 P Gq, F 1 P Cκ,ω, and
B and B1 are arrays of N elements in Gq.

(c) Interpret σpos as nodepkA, kB, kC , kD, kE , kF q, where kA, kC , kD P Zq, kF P Rκ,ω,
and kB and kE are arrays of N elements in Zq.

Reject if this fails.

2. Compute a seed s � RO seed
�
ρ | nodepg, h, u, pk , w, w1q

�
.

3. Set pt0, . . . , tN�1q � PRGpsq, where ti P t0, 1u8rne{8s is interpreted as a non-negative
integer 0 ¤ ti 28rne{8s, set ei � ti mod 2ne and compute

A �
¹N�1

i�0
ueii and F �

¹N�1

i�0
weii .

4. Compute a challenge v � ROchallenge
�
ρ | nodepleafpsq, τposq

�
interpreted as a non-

negative integer 0 ¤ v 2nv .

5. Compute C �
±N�1
i�0 ui

L±N�1
i�0 hi, D � BN�1

L
h
±N�1
i�0 ei

0 , set B�1 � h0, and accept if
and only if

AvA1 � gkA
¹N�1

i�0
h
kE,i
i CvC 1 � gkC

Bv
i B

1
i � gkB,iB

kE,i
i�1 for i � 0, . . . , N � 1 DvD1 � gkD

F vF 1 � Encpk p1,�kF q
¹N�1

i�0
pw1

iq
kE,i

9 Verification

The verification algorithm must verify that the input ciphertexts were repeatedly re-randomized by
the mix-servers and then jointly decrypted with a secret key corresponding to the public key used

13

by senders to encrypt their messages. Furthermore, the parameters of the execution must match
the relevant parameters in the protocol info file.

9.1 Components of the Non-Interactive Zero-Knowledge Proof

A proof should be viewed as a capsule that relates a public key, an input, and an output in a
provable way. In addition to the parameters we need from the protocol info file, we have specific
parameters of a given session stored in separate files. These files are found in the root of the
directory.

There is also a subdirectory proofs holding the intermediate results of the execution as well
as non-interactive zero-knowledge proofs relating the intermediate results, the individual public
keys, the full public key, the input, and the output.

The idea of this division of files is to emphasize that a complete verifier consists of two parts.
The first part is what is discussed in this document, i.e., verifying the contents of the overall non-
interactive zero-knowledge proof. The second part is to verify that the actual public key, input
ciphertexts, and output plaintexts of a particular application matches those in the proof. This
includes verifying the version of Verificatum, the type of proof, the auxiliary session identifier,
and the width.

The first part requires a reasonable background in cryptography and programming, whereas
the second part can be achieved by a very simple program. Even people with limited background in
cryptography and programming can re-use verifiers implemented by knowledgeable independent
parties to check the first part and then write their own simple program for verifying the second
part, without peeking into the proofs directory. The latter program would also be easy to audit.
The end result is a trustworthy complete verifier.

Another related reason is that there are complex tallying protocols that repeatedly uses the
mix-net as a blackbox to mix, shuffle, and decrypt. Each session can be verified using verifiers
written by independent parties. Then a simple verifier that relates the sessions can be implemented
and audited with a limited background in cryptography.

9.1.1 Files in the Main Directory

We now give details about the files in the main directory.

1. version – An ASCII version string version of the Verificatum software that created the
proof. This string is denoted by version.

2. auxsid – An auxiliary session identifier of this session as an ASCII string consisting of let-
ters A–Z, a–z, digits 0–9, and underscore. This equals default unless a different auxiliary
session identifier is given explicitly when executing the mix-net. This string is denoted by
auxsid.

3. width – The width ω ¡ 0 of ciphertexts as a decimal number in ASCII. This may, or may
not, be identical to the default width in the protocol info file.

4. FullPublicKey.bt – Full public key used to form input ciphertexts. The required format of
this file is a byte tree pk , where pk PMκ �Mκ. Here the key width κ, the basic message
spaceMκ � Gκq , and the underlying prime order group Gq are derived from the protocol
info file.

5. Ciphertexts.bt – Input ciphertexts. The required format of this file is a byte tree L0, where
L0 is an array of N elements in Cκ,ω. This defines N , the number of input ciphertexts.

14

6. ShuffledCiphertexts.bt – For a shuffling session, the re-randomized and permuted cipher-
texts. This file should contain a byte tree Lλ, where Lλ is an array of N elements in Cκ,ω.

9.1.2 Files in the Proofs Directory

The proofs directory proofs holds not only the Fiat-Shamir proofs, but also the intermediate re-
sults. In this section we describe the formats of these files and introduce notation for their contents.
Here xly denotes an integer parameter 0 ¤ l ¤ k encoded using two decimal digits representing
the index of a mix-server, but a file with suffix l may not originate from the lth mix-server if it is
corrupted and all types of files do not appear with all suffixes.

Files for proofs of shuffles.

7. Ciphertextsxly.bt – The lth intermediate list of ciphertexts, i.e., normally the output of the
lth mix-server. This file should contain a byte tree Ll, where Ll is an array of N elements
in Cκ,ω (and N is the number of elements in the list L0 of input ciphertexts).

8. PermutationCommitmentxly.bt – Commitment to a permutation. The required format of
the byte tree µl in this file is specified in Algorithm 17.

9. PoSCommitmentxly.bt – “Proof commitment” of the proof of a shuffle. The required
format of the byte tree τposl in this file is specified in Algorithm 17.

10. PoSReplyxly.bt – “Proof reply” of the proof of a shuffle. The required format of the byte
tree σposl in this file is specified in Algorithm 17.

9.1.3 Relation Between Files and Abstract Notation

For easy reference we tabulate the notation introduced below and from which file the contents is
derived in the table below.

Not. Point File
version 1 version
auxsid 2 auxsid
ω 3 width
pk 4 FullPublicKey.bt
L0 5 Ciphertexts.bt
Lλ 6 ShuffledCiphertexts.bt
Ll 7 Ciphertextsxly.bt
µl 8 PermutationCommitmentxly.bt
τposl 9 PoSCommitmentxly.bt
σpos
l 10 PoSReplyxly.bt

9.2 Subroutines of the Verification Algorithm

We are now ready to summarize the subroutines needed for verification in terms of the abstract
notation introduced above.

Correctness of shuffling. Next we describe the algorithm for verifying a complete shuffling
consisting of intermediate lists of ciphertexts and either proofs of shuffles, or proofs of shuffles of
commitments combined with commitment-consistent proofs of shuffles.

15

Algorithm 18 (Verifier of Shuffling).
Input Description
ρ Prefix to random oracles.
λ Number of mix-servers.
N Size of the arrays.
ne Number of bits in each component of random vectors used for batching.
nr Acceptable “statistical error” when deriving independent generators.
nv Number of bits in challenges.

PRG Pseudo-random generator used to derive random vectors for batching.
Gq Group of prime order.
Rκ,ω Randomness group.
Cκ,ω Ciphertext group.
pk Joint public key.
L0 Original ciphertexts.
Lλ Shuffled ciphertexts.

Program

For l � 1, . . . , λ do:

1. Array of ciphertexts. If l λ, then read the array Ll of N ciphertexts in Cκ,ω as
described in Point 7. If this fails, then reject.

2. Verify proof of shuffle. Read proof commitment τposl and proof reply σposl as described
in Point 9 and Point 10, respectively. Then execute Algorithm 17 on input

pρ,N, ne, nr, nv,PRG , Gq,Rκ,ω, Cκ,ω, pk , Ll�1, Ll, µl, τ
pos
l , σposl q .

If reading fails or if the algorithm rejects, then verify that Ll � Ll�1. If this is not the
case, then reject.

3. Accept proof.

9.3 Verification Algorithm

We are finally ready to describe the verification algorithm. We stress that the parameters specified
in the protocol info file must be evaluated manually. If any parameter is found to be weak, then
the proof can not be trusted. Furthermore, the version file contains the version of Verificatum that
was used to produce the proof. The user is expected to check that its verifier is compatible.

16

Algorithm 19 (Verifier).
Input Description

protinfo Protocol info file.
directory Directory containing proof.

auxsidexpected Expected auxiliary session identifier.
ωexpected Expected width of ciphertexts.

Program

1. Protocol parameters. Verify that the XML of the protocol info file protinfo is
well-formed and reject otherwise. Attempt to read the public parameters from protinfo as
described in Section 7. If this fails, then reject. This defines versionprot, sid, k, λ, ne, nr,
nv, sH , sPRG , sGq , sH , κ, and ωdefault.

2. Proof parameters. Read versionproof, auxsid, ω, from the proof directory directory as
described in Point 1 – Point 3. If this fails, then reject. If versionproof � versionprot, then
reject. If auxsid � auxsidexpected, then reject. If ωexpected � K and ω � ωdefault, then
reject. If ωexpected � K and ω � ωexpected, then reject.

3. Derived sets and objects. Attempt to derive and define the underlying group
Gq � unmarshalpsGqq, the plaintextsMκ � Gκq , randomnessRκ � Zκq , and ciphertexts
Cκ �Mκ �Mκ defined for a given key width κ. Then define the generalized set of
plaintextsMκ,ω �Mω

κ , the set of randomnessRκ,ω � Rωκ , and the set of ciphertexts
Cκ,ω �Mκ,ω �Mκ,ω. Finally, define the hash function H � HashfunctionpsHq, and
the pseudo-random generator PRG � PRG

�
HashfunctionpsPRGq

�
. If anything fails,

then reject.

4. Prefix to Random Oracles. To differentiate sessions, we compute a digest ρ of selected
protocol parameters and use this as a prefix to all calls to random oracles. Then ρ is
defined by

ρ � H

�
�����

node
�

versionproof, sid|”.”|auxsid,

bytes4pnrq,bytes4pnvq,bytes4pneq,

sPRG , sGq , sH

�
���� .

17

Algorithm 20 (Algorithm 19 continued).
5. Read key. Attempt to read the joint public key pk , where pk � pg, yq is contained in
Cκω, from file as described in Point 4. If this fails, then reject.

6. Read lists.

(a) Read input ciphertexts. Read the array L0 of N ciphertexts as described in Point 7
for some N . If this fails, then reject. This defines the integer N used to verify the
length of other arrays.

(b) Read shuffled ciphertexts. Read Lλ as described in Point 6.

7. Verify relations between lists.

(a) Verify shuffling. Execute Algorithm 18 on input

pρ, λ,N, ne, nr, nv,PRG , Gq,Rκ,ω, Cκ,ω, pk, L0, Lλq .

If it rejects, then reject.
(b) Accept proof.

10 Standard Command Line Interface of Verifier

To maximize interoperability and to simplify execution of multiple verifiers we require that every
verifier can be invoked from the command line using the basic options described in the Verifica-
tum mix-net user manual [6] and behave correspondingly. Below we specify how each standard
command line expression is translated into a call to Algorithm 19.

All commands must be silent by default and halt with exit status 0 upon success, and otherwise
halt with a non-zero exit status. The -v option can be used to turn on verbose output displaying
progress and the verifications performed. There are no rules for what the output must look like,
but it is a good idea to output something similar to what the builtin verifier vmnv outputs. Syntax
errors or incorrect usage must print error messages even if the -v option is not used.

Denote by verifier an independently implemented command line tool. For future com-
patibility we require that the following command outputs a space separated list of all versions of
Verificatum for which the verifier is compatible.

verifier -compat

Let protInfo.xml be a protocol info file and let directory contain the complete proof to be
verified. Let verifier denote Algorithm 19. For each type of proof and proof parameters specified
on the command line below, we assign values to the variables: auxsidexpected, ωexpected, and then
require that the output of the command is given by

verifierptypeexpected,protInfo.xml,directory, auxsidexpected, ωexpectedq .

Proof of shuffling. It must be possible to verify a proof of a shuffling using the following com-
mand.

verifier -shuffle protInfo.xml directory

18

For this command we set auxsidexpected � default, ωexpected � K For each additional option the
needed changes to the parameters are listed below.

Option Changes
-auxsid <auxsid> auxsidexpected � <auxsid>
-width <width> ωexpected � <width>

The parameters must satisfy the same requirements as for proofs of mixing.

11 Additional Verifications Needed in Applications

The formats used to represent the public key handed to the senders and the list of ciphertexts
received from senders and the output list of ciphertexts may be application dependent. Thus, to
verify the overall correctness in a given application, it must be verified that all parties agree on a
scheme where:

1. The public key actually used by senders is an representation of pk .

2. The actual input ciphertexts is a representation of L0.

3. The actual output ciphertexts is a representation of Lλ.

All of the above falls outside the scope of this document, since we can not anticipate the scheme
used to represent objects or how the plaintext group elements are decoded into some other repre-
sentations.

12 Acknowledgments

The suggestions of Torbjörn Granlund, Tomer Hasid, Shahram Khazaei, Gunnar Kreitz, Olivier
Pereira, and Amnon Ta-Shma have greatly improved the presentation.

References

[1] T. El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Transactions on Information Theory, 31(4):469–472, 1985.

[2] A. Fiat and A. Shamir. How to prove yourself. practical solutions to identification and sig-
nature problems. In Advances in Cryptology – Crypto ’86, volume 263 of Lecture Notes in
Computer Science, pages 186–189. Springer Verlag, 1986.

[3] N. I. of Standards and T. (NIST). Secure hash standard. Federal Information Processing
Standards Publication 180-2, 2002. http://csrc.nist.gov/.

[4] K. Sako and J. Kilian. Reciept-free mix-type voting scheme. In Advances in Cryptology –
Eurocrypt ’95, volume 921 of Lecture Notes in Computer Science, pages 393–403. Springer
Verlag, 1995.

[5] B. Terelius and D. Wikström. Proofs of restricted shuffles. In Africacrypt 2010, volume 6055
of Lecture Notes in Computer Science, pages 100–113, 2010.

[6] D. Wikström. User manual for the Verificatum mix-net. Manuscript, 2012. Available at
http://www.verificatum.org.

19

A Test Vectors for Cryptographic Primitives

PRGpHashfunctionp"SHA-256"qq
Seed (32 bytes):

000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f

Expansion (128 bytes):

70f4003d52b6eb03da852e93256b5986b5d4883098bb7973bc5318cc66637a84

04a6950a06d3e3308ad7d3606ef810eb124e3943404ca746a12c51c7bf776839

0f8d842ac9cb62349779a7537a78327d545aaeb33b2d42c7d1dc3680a4b23628

627e9db8ad47bfe76dbe653d03d2c0a35999ed28a5023924150d72508668d244

PRGpHashfunctionp"SHA-384"qq
Seed (48 bytes):

000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f

202122232425262728292a2b2c2d2e2f

Expansion (128 bytes):

e45ac6c0cafff343b268d4cbd773328413672a764df99ab823b53074d94152bd

27fc38bcffdb7c1dc1b6a3656b2d4819352c482da40aad3b37f333c7afa81a92

b7b54551f3009efa4bdb8937492c5afca1b141c99159b4f0f819977a4e10eb51

61edd4b1734717de4106f9c184a17a9b5ee61a4399dd755f322f5d707a581cc1

PRGpHashfunctionp"SHA-512"qq
Seed (64 bytes):

000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f

202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f

Expansion (128 bytes):

979043771043f4f8e0a2a19b1fbfbe5a8f076c2b5ac003e0b9619e0c45faf767

47295734980602ec1d8d3cd249c165b7db62c976cb9075e35d94197c0f06e1f3

97a45017c508401d375ad0fa856da3dfed20847716755c6b03163aec2d9f43eb

c2904f6e2cf60d3b7637f656145a2d32a6029fbda96361e1b8090c9712a48938

RandomOraclepHashfunctionp"SHA-256"q, 65q
Input (32 bytes):

000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f

Output (9 bytes of which the last 65 bits may be non-zero):

001a8d6b6f65899ba5

RandomOraclepHashfunctionp"SHA-256"q, 261q
Input (32 bytes):

000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f

Output (33 bytes of which the last 261 bits may be non-zero):

1c04f57d5f5856824bca3af0ca466e283593bfc556ae2e9f4829c7ba8eb76db8

78

20

RandomOraclepHashfunctionp"SHA-384"q, 93q
Input (32 bytes):

000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f

Output (12 bytes of which the last 93 bits may be non-zero):

04713a5e22935833d436d1db

RandomOraclepHashfunctionp"SHA-384"q, 411q
Input (32 bytes):

000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f

Output (52 bytes of which the last 411 bits may be non-zero):

00dc086c320e38b92722a9c0f87f2f5de81b976400e2441da542d1c3f3f391e4

1d6bcd8297c541c2431a7272491f496b622266aa

RandomOraclepHashfunctionp"SHA-512"q, 111q
Input (32 bytes):

000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f

Output (14 bytes of which the last 111 bits may be non-zero):

28d742c34b97367eb968a3f28b6c

RandomOraclepHashfunctionp"SHA-512"q, 579q
Input (32 bytes):

000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f

Output (73 bytes of which the last 579 bits may be non-zero):

00a6f79b8450fef79af71005c0b1028c9f025f322f1485c2b245f658fe641d47

dcbb4fe829e030b52e4a81ca35466ad1ca9be6feccb451e7289af318ddc9dae0

98a5475d6119ff6fe0

B Schema for Protocol Info Files

<?xml version="1.0" encoding="ISO-8859-1" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="protocol">
<xs:complexType>
<xs:sequence>

<xs:element name="version"
type="xs:string"
minOccurs="1"
maxOccurs="1"/>

<xs:element name="sid"
type="xs:string"
minOccurs="1"
maxOccurs="1"/>

<xs:element name="name"

21

type="xs:string"
minOccurs="1"
maxOccurs="1"/>

<xs:element name="descr"
type="xs:string"
minOccurs="1"
maxOccurs="1"/>

<xs:element name="nopart"
type="xs:integer"
minOccurs="1"
maxOccurs="1"/>

<xs:element name="statdist"
type="xs:integer"
minOccurs="1"
maxOccurs="1"/>

<xs:element name="bullboard"
type="xs:string"
minOccurs="1"
maxOccurs="1"/>

<xs:element name="thres"
type="xs:integer"
minOccurs="1"
maxOccurs="1"/>

<xs:element name="pgroup"
type="xs:string"
minOccurs="1"
maxOccurs="1"/>

<xs:element name="keywidth"
type="xs:integer"
minOccurs="1"
maxOccurs="1"/>

<xs:element name="cbitlen"
type="xs:integer"
minOccurs="1"
maxOccurs="1"/>

<xs:element name="cbitlenro"
type="xs:integer"
minOccurs="1"
maxOccurs="1"/>

<xs:element name="vbitlen"
type="xs:integer"
minOccurs="1"
maxOccurs="1"/>

<xs:element name="vbitlenro"
type="xs:integer"
minOccurs="1"
maxOccurs="1"/>

<xs:element name="prg"
type="xs:string"

22

minOccurs="1"
maxOccurs="1"/>

<xs:element name="rohash"
type="xs:string"
minOccurs="1"
maxOccurs="1"/>

<xs:element name="corr"
type="xs:string"
minOccurs="1"
maxOccurs="1"/>

<xs:element name="width"
type="xs:integer"
minOccurs="1"
maxOccurs="1"/>

<xs:element name="maxciph"
type="xs:integer"
minOccurs="1"
maxOccurs="1"/>

<xs:element name="party"
minOccurs="0"
maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>

<xs:element name="name"
type="xs:string"
minOccurs="1"
maxOccurs="1"/>

<xs:element name="srtbyrole"
type="xs:string"
minOccurs="1"
maxOccurs="1"/>

<xs:element name="descr"
type="xs:string"
minOccurs="1"
maxOccurs="1"/>

<xs:element name="pkey"
type="xs:string"
minOccurs="1"
maxOccurs="1"/>

<xs:element name="http"
type="xs:string"
minOccurs="1"
maxOccurs="1"/>

<xs:element name="hint"
type="xs:string"
minOccurs="1"
maxOccurs="1"/>

</xs:sequence>

23

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>
</xs:element>

</xs:schema>

C Example Protocol Info File

<!-- ATTENTION! WE STRONGLY ADVICE AGAINST EDITING THIS FILE!

This is a protocol information file. It contains all the
parameters of a protocol session as agreed by all parties.

Each party must hold an identical copy of this file. WE
RECOMMEND YOU TO NOT EDIT THIS FILE UNLESS YOU KNOW EXACTLY
WHAT YOU ARE DOING. -->

<protocol>

<!-- Protocol version for which this protocol info is intended. -->
<version>1.1.7</version>

<!-- Session identifier of this protocol execution. This must be
globally unique. -->

<sid>SID</sid>

<!-- Name of this protocol execution. This is a short descriptive
name that is NOT necessarily unique. -->

<name>Swedish Election</name>

<!-- Description of this protocol execution. This is merely a
longer description than the name of the protocol execution. -->

<descr></descr>

<!-- Number of parties taking part in the protocol execution. -->
<nopart>3</nopart>

<!-- Statistical distance from uniform of objects sampled in
protocols or in proofs of security. -->

<statdist>100</statdist>

<!-- Name of bulletin board implementation used. -->
<bullboard>verificatum.protocol.com.BullBoardBasicHTTPW</bullboard>

<!-- Threshold number of parties needed to violate privacy, i.e.,
this is the number of parties needed to decrypt. -->

<thres>2</thres>

<!-- Group over which the protocol is executed. An instance of a
subclass of verificatum.arithm.PGroup. -->

<pgroup>ModPGroup(safe-prime modulus=2*order+1. order bit-length = 511
)::0000000002010000001c766572696669636174756d2e61726974686d2e4d6f64504772
6f757000000000040100000041009a91c3b704e382e0c772fa7cf0e5d6363edc53d156e84
1555702c5b6f906574204bf49a551b695bed292e0218337c0861ee649d2fe4039174514fe
2c23c10f6701000000404d48e1db8271c17063b97d3e7872eb1b1f6e29e8ab7420aaab816
2db7c832ba1025fa4d2a8db4adf69497010c19be0430f7324e97f201c8ba28a7f1611e087

24

b3010000004100300763b0150525252e4989f51e33c4e6462091152ef2291e45699374a3a
a8acea714ff30260338bddbb48fc7446b273aaada90e3ee8326f388b582ea8a0735020100
00000400000001</pgroup>

<!-- Width of El Gamal keys. If equal to one the standard El Gamal
cryptosystem is used, but if it is greater than one, then the
natural generalization over a product group of the given width
is used. This corresponds to letting each party holding
multiple standard public keys. -->

<keywidth>1</keywidth>

<!-- Bit length of challenges in interactive proofs. -->
<cbitlen>128</cbitlen>

<!-- Bit length of challenges in non-interactive random-oracle
proofs. -->

<cbitlenro>256</cbitlenro>

<!-- Bit length of each component in random vectors used for
batching. -->

<vbitlen>128</vbitlen>

<!-- Bit length of each component in random vectors used for
batching in non-interactive random-oracle proofs. -->

<vbitlenro>256</vbitlenro>

<!-- Pseudo random generator used to derive random vectors from
jointly generated seeds. This can be "SHA-256", "SHA-384", or
"SHA-512", in which case verificatum.crypto.PRGHeuristic is
instantiated based on this hashfunction, or it can be an
instance of verificatum.crypto.PRG. -->

<prg>SHA-256</prg>

<!-- Hashfunction used to implement random oracles. It can be one
of the strings "SHA-256", "SHA-384", or "SHA-512", in which
case verificatum.crypto.HashfunctionHeuristic is is
instantiated, or an instance of verificatum.crypto.
Hashfunction. Random oracles with various output lengths are
then implemented, using the given hashfunction, in verificatum.
crypto.RandomOracle.
WARNING! Do not change the default unless you know exactly
what you are doing. -->

<rohash>SHA-256</rohash>

<!-- Determines if the proofs of correctness of an execution are
interactive or non-interactive ("interactive" or
"noninteractive"). -->

<corr>noninteractive</corr>

<!-- Default width of ciphertexts processed by the mix-net. A
different width can still be forced for a given session by
using the "-width" option. -->

<width>1</width>

<!-- Maximal number of ciphertexts for which precomputation is
performed. Pre-computation can still be forced for a different
number of ciphertexts for a given session using the "-maxciph"
option during pre-computation. -->

<maxciph>10000</maxciph>

<party>

25

<!-- Name of party. -->
<name>Party1</name>

<!-- Sorting attribute used to sort parties with respect to their
roles in the protocol. This is used to assign roles in
protocols where different parties play different roles. -->

<srtbyrole>anyrole</srtbyrole>

<!-- Description of this party. This is merely a longer
description than the name of the party. -->

<descr></descr>

<!-- Public signature key (instance of crypto.SignaturePKey). -->
<pkey>verificatum.crypto.SignaturePKeyHeuristic(RSA, bitlength=2048

)::00000000020100000029766572696669636174756d2e63727970746f2e5369676e6174
757265504b657948657572697374696300000000020100000004000008000100000126308
20122300d06092a864886f70d01010105000382010f003082010a02820101009ede9fabab
1c967d60687424833be932b97c9b901de53edc2cae81130aa0a911c79421f320a77d5b018
d487d9536c9803a35a209a6843ab1865b8d80de374360f3e69ee0e19a36d57da64362d22e
3b25e4c4ea5efbea312ffa269d7c7ae90b850e91756431b63b04ea10570851a5cf32d1817
0507889aca76db264daa452e713d25ed7ed8536c1a266fc4762e34138f2550bdd84abed07
68b88fba6a10e41754bc8308a474d3cf373b6b293f3e320b9c37c972eaf9a736c09aff6de
98dcdab5ce998f25339c3ff89dbd6ac73192ce3ddfb612034973a01009b9c79a493bc478b
fe27af3f227d75eccd973785e6e1904b7c494709d048bfb6f224d7a8c461ff33020301000
1</pkey>

<!-- URL to the HTTP server of this party. -->
<http>http://mybox1.mydomain1.com:8080</http>

<!-- Socket address given as <hostname>:<port> to our hint server.
A hint server is a simple UDP server that reduces latency and
traffic on the HTTP servers. -->

<hint>mybox1.mydomain1.com:4040</hint>

</party>

<party>

<!-- Name of party. -->
<name>Party2</name>

<!-- Sorting attribute used to sort parties with respect to their
roles in the protocol. This is used to assign roles in
protocols where different parties play different roles. -->

<srtbyrole>anyrole</srtbyrole>

<!-- Description of this party. This is merely a longer
description than the name of the party. -->

<descr></descr>

<!-- Public signature key (instance of crypto.SignaturePKey). -->
<pkey>verificatum.crypto.SignaturePKeyHeuristic(RSA, bitlength=2048

)::00000000020100000029766572696669636174756d2e63727970746f2e5369676e6174
757265504b657948657572697374696300000000020100000004000008000100000126308
20122300d06092a864886f70d01010105000382010f003082010a0282010100b5df4fd1f1
73bd8989426a15081a06a30f865719282bd24b18a833bca37ceac4ff97e598b2ea6b7d4ce
e58f02ea320bbf96bd0dfda0e840c07050d5b5b5e78c05106eaa226ce1ca305a7873f6287
e8c8ea79678b7ad916750659e466e828fc4154057e926a546153fc967ac1767e5ed286ead
46404a4aa949f43ffe48b1976ce2667bd3287ca7fdb8e0b89f9c58e770bede067fef17a56
446549d441786b0cdb5d955541686074db628ca85623357cc0c1bc8b44301b656db20c01c

26

691843c9977cff05e7d53d71987bf139ebd2deb768d4917c6bb6175bc74462419f02a92c1
6e8a9384e16d5d13c23f6f944befdc8591ebc7e661e6a6c2fb12bf2f7de292ab020301000
1</pkey>

<!-- URL to the HTTP server of this party. -->
<http>http://mybox2.mydomain2.com:8080</http>

<!-- Socket address given as <hostname>:<port> to our hint server.
A hint server is a simple UDP server that reduces latency and
traffic on the HTTP servers. -->

<hint>mybox2.mydomain2.com:4040</hint>

</party>

<party>

<!-- Name of party. -->
<name>Party3</name>

<!-- Sorting attribute used to sort parties with respect to their
roles in the protocol. This is used to assign roles in
protocols where different parties play different roles. -->

<srtbyrole>anyrole</srtbyrole>

<!-- Description of this party. This is merely a longer
description than the name of the party. -->

<descr></descr>

<!-- Public signature key (instance of crypto.SignaturePKey). -->
<pkey>verificatum.crypto.SignaturePKeyHeuristic(RSA, bitlength=2048

)::00000000020100000029766572696669636174756d2e63727970746f2e5369676e6174
757265504b657948657572697374696300000000020100000004000008000100000126308
20122300d06092a864886f70d01010105000382010f003082010a02820101009815a090d5
44fde17f594c63509c6a0f29217b8652857501e28fb94845eb0851cc00d343e321e103fe7
c1d05053e7ffcc8ed4f5f1db0d63f048a8eac5a2bcdedd12ba4f23dc44ea358acfa09c2c2
7783fd879e790c3fe04f97fdf781be52f27dd374c35583faa5754e3f08987da0009ab62e0
42729c12a270ed374c939d4bed4a460c756fc273abab082e45e252b11c447fd31e6fb6f4c
20ce4d363742790251bc5dc6de01283c1314ef6fe504a6fed27c95c3c1462b0c50c12c7d0
e1bd481944eb251169d7f18084b5897ec5820c5a19cec05d2016a459047d7cff6d2af0a11
2bcbbefb5199657ba8df302eff45eea7277b0e1a10041061189fbd39986481b3020301000
1</pkey>

<!-- URL to the HTTP server of this party. -->
<http>http://mybox3.mydomain3.com:8080</http>

<!-- Socket address given as <hostname>:<port> to our hint server.
A hint server is a simple UDP server that reduces latency and
traffic on the HTTP servers. -->

<hint>mybox3.mydomain3.com:4040</hint>

</party>

</protocol>

27

D Zero-Knowledge Protocols

Protocol 21 (Proof of a Shuffle).
Common Input. Generators g, h0, . . . , hN�1 P Gq and Pedersen commitments u0, . . . , uN�1 P
Gq, a public key pk , elements w0, . . . , wN�1 P Cω and w1

0, . . . , w
1
N�1 P Cω.

Private Input. Exponents s � ps0, . . . , sN�1q P RNω and a permutation π P SN such that
w1
i � Encpk p1, sπ�1piqqwπ�1piq for i � 0, . . . , N � 1.

1. P chooses r � pr0, . . . , rN�1q P ZNq randomly and computes ui � grπpiqhπpiq.

2. V chooses a seed s P t0, 1un randomly, defines e P r0, 2ne � 1sN as e � PRGpsq, hands
s to P and computes A �

±N�1
i�0 ueii and F �

±N�1
i�0 weii .

3. P computes the following, where e1i � eπ�1piq:

(a) Bridging Commitments. It chooses b0, . . . , bN�1 P Zq randomly, sets B�1 � h0, and

forms Bi � gbiB
e1i
i�1 for i � 0, . . . , N � 1.

(b) Proof Commitments. It chooses α, β0, . . . , βN�1, γ, δ P Zq and ε0, . . . , εN�1 P
r0, 2ne�nv�nr � 1s, φ P Rω randomly, sets B�1 � h0, and forms

A1 � gα
¹N�1

i�0
hεii C 1 � gγ

B1
i � gβiBεi

i�1 for i � 0, . . . , N � 1 D1 � gδ

F 1 � Encpk p1,�φq
¹N�1

i�0
pw1

iq
εi .

Then it hands pB,A1, B1, C 1, D1, F 1q to V .

4. V chooses v P r0, 2nv � 1s randomly and hands v to P .

5. P computes a � xr, e1y, c �
°N�1
i�0 ri, and f � xs, ey. Then it sets d0 � b0 and computes

di � bi � e1idi�1 for i � 1, . . . , N � 1. Finally, it sets d � dN�1 and computes

kA � va� α kC � vc� γ

kB,i � vbi � βi for i � 0, . . . , N � 1 kD � vd� δ

kE,i � ve1i � εi for i � 0, . . . , N � 1 kF � vf � φ .

Then it hands pkA, kB, kC , kD, kE , kF q to V .

6. V computes C �
±N�1
i�0 ui

L±N�1
i�0 hi, D � BN�1

L
h
±N�1
i�0 ei

0 , and sets B�1 � h0 and
accepts if and only if

AvA1 � gkA
¹N�1

i�0
h
kE,i
i CvC 1 � gkC

Bv
i B

1
i � gkB,iB

kE,i
i�1 for i � 0, . . . , N � 1 DvD1 � gkD

F vF 1 � Encpk p1,�kF q
¹N�1

i�0
pw1

iq
kE,i

28

